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In the evenly-tempered 12-note chromatic scale of western music, two impor-
tant intervals are well-approximated - the pure fifth with ratio 3/2, and the
major third with ratio 5/4. After taking log-ratios, the musical scale can be
viewed as an example of the approximation of two irrational numbers by a pair
of rational numbers with the same denominator (in this case, 12). A general
approach to such problems is provided by the theory of ternary continued frac-
tions.

1. INTRODUCTION

The most important intervals in music are the octave, pure fifth, and major
third. Perhaps they are consonant to the ear because they are based on simple
whole number ratios (2:1, 3:2, and 5:4, respectively). These intervals arise
naturally out of the overtone series for a vibrating string. A string vibrating at
a frequency f also vibrates at 2f, 3f, 4f, etc. The ratios between the overtones
include these basic intervals. There are more complicated intervals than the
major third, but they are not heard by the ear strongly enough to be a major
factor in tuning,

It is impossible to tune a scale so that all of these intervals come out exact
for all the notes. In every system of tuning the ratio of two notes an octave
apart is always taken to be exactly 2:1. The attempt of most systems of tuning
has been to approximate the fifth and major third, although the accuracy of
the fifth often predominates.
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For example, the Pythagorean system of tuning is based only on the octave
and fifth. All the fifths but one have a ratio of 3:2. It works well for unison
melodies and simple melodies with fourths and fifths, but for more compli-
cated melodies with thirds and sixths it sounds dissonant. Furthermore,
because some half-steps have different ratios than others, some keys sound
more consonant than others. A piece played in C will sound more in tune than
a piece in F#.

The problems of different tunings in different keys can be avoided by res-
tricting attention to tunings in which all the half-steps have the same ratio.
Such a scale is called evenly-tempered. The modern day piano and many other
instruments are tuned to the 12-note evenly-tempered scale. The basic interval
is the half-step.

More generally, we might consider an evenly-tempered scale of n notes in
which each unit interval has a ratio 2"/": 1. If there are k notes in the approxi-
mation to the pure fifth, then this interval has a ratio of 2k/m:1. This will be an
irrational number and so can never be exactly 3:2. Similarly for the major
third. Thus, in a good evenly-tempered n-note scale there will be numbers h
and k such that 2""~5/4 and 2¥/"~3/2. That is, h/n~log5/4 and
k/n=logy3/2.

In fact, logarithms make intuitive sense in dealing with intervals. The ear
hears a half-step above a half-step as a whole step, so it seems more natural to
add the logarithms of the ratios than to multiply the ratios. If one divides the
octave into [200 logarithmic units known as cents, each half-step of the 12-
note scale is 100 cents. A true major third has a value of 1200(log,5/4) ~ 386
cents and a true pure fifth has a value of 1200(log;3/2) ~ 702 cents. Thus in
the 12-note scale the major third is 14 cents sharper than a true major third
and the fifth is 2 cents flat.

The object of this paper is to find evenly-tempered scales which give good
approximations to the true major third and pure fifth. We are looking for a
sequence of pairs of rational numbers with the same denominator, which
approximate log,5/4 and log,3/2. The process by which this is done is known
as the theory of ternary continued fractions, and it forms an extension of the
idea of ordinary continued fractions. Ordinary continued fractions are used to
approximate one number; ternary continued fractions are used to approximate
two numbers. They were developed by Jacosi [6]. We will discuss Jacobr’s
expansion in Section 3 and then an alternative expansion known as the
reversed expansion in Section 4. These two expansions can be combined (Sec-
tion 5) in a way to give us a sequence of approximations which include many
of the scales proposed by musical theorists (Section 6).

The main ideas of this paper are due to BARBOUR ([2], and {3], Chapter 6),
who gives further details about the musical implications of these results. Here
we shall concentrate in more detail on the mathematical development of ter-
nary continued fractions.
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2. ORDINARY CONTINUED FRACTIONS

The theory of ordinary continued fractions provides a powerful method of
finding a sequence of rational approximations to an irrational number; see, for
example HARDY and WRIGHT ([5], Chapter 10) or BAKER ([1], Chapter 6).

For our purposes we shall restrict attention to the case where ag<<I is an
irrational positive number. The continued fraction expansion for ay can be
developed as follows. Define a sequence of integers p;=1 and positive real
numbers ¢; <1 by

_ 1 — 1 .
pi=lai’l, iy =a; —p;, i =0,

where [ . ] denotes integer part. At each stage we approximate a remainder by
the integer part of its reciprocal. Thus,

a; = [aj+1+pi] L. 2.1
If for some j we approximate a;,,~0 and use backwards recursion in (2.1),
then we obtain a rational approximation for ay which can be written as a ratio
of integers, 4;/B; say.

For more formal mathematical work it is convenient to set out this pro-
cedure in terms of linear transformations. Set Uy = ag, Vo = 1, and define
sequences of positive real numbers by
Ui - ) (U
Vit 1 0 |V

where p; = [V;/U;]. Thus V,;/U; is the same as «; ! above. Next define
sequences of integers A;, B; by

(A; Ai—a 4] 1
B,' Bi—2 B,'_I Pi

-3

Then A;/B; is called the i-th convergent for ay and A;/B;—ay as i—oo. This
is classically expressed by the equality
_ 1
na 1
Pot

with initial conditions
(A_5 A_,
B_, B_,

1
+_—
Pt

Further it can be shown that the speed of convergence is quite rapid,
| 4;/B; — &y | <1/B}. (2:2)

The multivariate version of Dirichlet’s theorem (see for example HArRDY and
WRIGHT [5], pp. 169-170, or BAKER [1], pp. 56-59) says that, given positive
numbers B, ..., B, and an integer Q" >0, there exist integers 0<Q" and
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Py, ..., P, such that
IPj/Q_Bj|<Q-I Vm_ j=1...,m.

From (2.2) we see that ordinary continued fractions (m = [) always achieve
this inequality. Unfortunately the approximations from ternary continued
expansions (m = 2) are not so powerful in general.

3. JACOBY'S TERNARY CONTINUED FRACTION EXPANSION

Let Uy<Vy<W, = 1 be three positive numbers. The objective is to find
integers (4,, B;, C;) such that 4;: B;: C; approximates Uy: Vo: W,. To ensure
the expansion is well defined, suppose Uy, Vo, Wy are linearly independent
over the rationals.

First define sequences U, V;, W; by the following recurrence formulae for
i =0,

Ui+ -p 10 Ui
Visit = 1~q 01 Vi (3.1
Wi I 00 (W

where
pi =W/l , ¢ = [Wi/U].

Next define 3 sequences of integers recursively for i=0 by

-

A; Ai—3 Ai2 Aiq| |1
Bi| = |Bi—3 Bi—2 Bi_1| |pi (3.2)
Lci Ci-3 G2 G} |4
with initial conditions
A_3 A5 A, 100
B_3 B-z B_] = 1010].
C_; C_, C_, 001

This is the Jacobi expansion for (U, Vo, W) (JACOBI [6]); see also DAUs [4].
The triple (4;, B;, C;) is known as the i-th convergent set, the pair (g;, p;) is the
i-th partial quotient set, and the triple (U;, V;, W;) is the i-th complete quotient
set. Thus, the approximation of Uy: Vo: Wy can be depicted as

1

Pt ps + -
@+
1 gs + -

I:po + n ‘qo t 1
+ + —
+P2 75 + - P2 g + -
9 FR— g1+ PR

V&) P3
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q3+... 24 q3+



The 3 3-matrix in (3.1) has determinant + 1, so that (U; 4+, V4, W;4) will
be linearly independent when (U;, V;, W;) are. In particular U, ;5= 0 which is
the only requirement that needs to be satisfied in order to continue the expan-
sion for another step. Thus, the expansion can be continued infinitely when
(Uy, Vo, Wy) are linearly independent.

From the definition of p; and ¢; we see that U, <U, and V; ,, <U,. Thus,
since W, = U;, we get

Ui <Wisr, Viex<Wis .

Therefore, at each step 0<<p;<g; and ¢,=1.

Let oy, =V,/U,;, 0,;=W;/U;. Then 0,;<o0,; and 0,,>1 at each step. Note

that o, and o,; play a role similar to that of a; ' in Section 2. Inverting the
matrix in (3.1) we see that

Ui 00 1||U+
Vil = [10p|| Vi (3.3)
Wi 01 gf||Winr
Thus
1 OL,i+1
oy, — ,‘+ y O — -+',—,
. P 02 +1 2 @ 02,i+1
where

1/02’,~+[<1 and 01,,'+[/02',~+[<1 .

Also, if p;=g¢;, then, since o, ;<0,;, we must have o, ; +;>1, and so p; + ; =1.
It can be shown (PERRON [7], [8]) that these properties of the partial quo-
tient sets (that is, that 0<\p;<\¢; and ¢;=>1 for all j, and that p,=g;=p, +,=1)
guarantee that the expansion is unique.
The first convergent sets are

Ao =1 Bg = po Co = 9o

A, =q1 By =qipot+1 Cy = quqotp:.
Thus

A,>0, B,>0, C,;>0.

Let S; stand for either 4;, B;, or C;. Then (3.2) together with the facts that
gi=1 and S;>0 for i=1 show that S;>S§; | for i=4. Therefore {S;};>3
forms a strictly increasing sequence ( DAUS [4], p. 281).

The following identity is easily proved by induction for i =0 using (3.3):

Uo Ai—3 Ai—y Ao || U
Vo| = |Bi-3 Bi—2 Bi—(||Vi|. (34
Wo Gz G G| |W
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Dividing two rows in (3.4) by U; and taking their ratio gives
Ud AistoAi_210y; Ay
Wo  Gosto G atoy Cio

(3.5)

If we approximate oy; by p; and o;; by ¢; we might hope that we would get
an approximation to U/ Wj. That is, we would hope,
Aistpidiatgdio A U

Ci3+pi Ci2tq C G Wy

In fact 4;/C; and B;/C; do converge to Uy/ Wy and Vo/ W, respectively,
but convergence is not nearly so swift as it is for ordinary continued fractions.
We shall show that

| 4;/C;—Ug/ Wy | + | Bi/C;—Vo/ Wy | = O(CY)
in contrast to (2.2) for ordinary continued fractions.
THEOREM 1. ( VAISALA [9]). Let Ug<<Vo<Wj be positive numbers linearly
independent over the rationals. Let (A;, B;, C;) be the i-th convergent set in the
Jacobi expansion. Then A;/ C;—Uqy/ Wy and B,/ C;(—Vy/ Wy as i— 0.
PROOF. Set H; = A; —(Uy/ Wy)C; and K; = B; —(Vo/Wy)C;. Then

Ai/Ci_ UO/W0=H,'/C,' ) B,'/C,‘ - Vo/Wo :K/C, .

Now C; 1 oo so if there is an upper bound on H; and K;, convergence is
guaranteed.
From (3.5) we see that

H; 3+o; Hy+oy; H—; = 0.
Therefore,

Hi_y = —1/oy; [H; 3+0,; H;].
Replacing i by i + 1 we get

H; = —Voyt1 [Hi—2to1i41 Hi1]. (3.6)
Also, from (3.2) we have

H, = H;i_3+p, H; 2+q H;_, . (3.7

There are two cases to consider. If H; _,, H,_; have the same sign, then by
(3.6) H; has the opposite sign, so from (3.7)

|H; | = |H; 3| —pi|Hi—2| = q|Hi| <|H 3].
If H; _,, H;_, have the opposite signs, then from (3.6)
| H | < max {0341 | Hi—2 |, (@1i+1702:+1) | Hi-1 | )
<max {|H; |, |Hi-]}
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Therefore in either case | H; | < max { | H; 3|, |Hi—2 |, | Hi-1 | }.
Thus | H; | is bounded above by max { | Hy |, | H,, | H, | }. Similarly
reasoning puts an upper bound on | X; |. Hence the theorem follows. |

In the theory of ordinary continued fractions, we know that any infinite
sequence of positive integers is the continued fraction expansion of some posi-
tive irrational number. We have an analogous result for ternary continued frac-
tions. Let {(p;, ¢;)}; be a sequence of pairs of integers such that
0<p,<gq;, ¢;=1 for all i, and if p;=g; then p;.,=1. Then {(p;, ¢;)}; is the
Jacobi expansion for some pair of positive numbers a; and By and {ap, Sy, 1)
are linearly independent over the rationals. For further details see PERRON [7],
[8].

The methods of this section can be extended in a straightforward way to
give a sequence of simultaneous rational approximations to more than two
irrational numbers; see PERRON [7].

4. THE REVERSED EXPANSION

There is another expansion due to BARBOUR [2] that can be used to get
approximations to Uy: Vo: Wy. In the Jacobi expansion one always divided
by U; at the i-th step. In the following, the reversed expansion, one divides by
V;. It is defined by the following recursion formulae in matrix form,

Ui I —pi 0] |U;
Vier| = |0 =g 1| | W @.1)
Wi+ 0 1 0w
where
pi = [Ui/Vi]and g; = [W;/V].
Set
A; 1 Ay A4, PDi
B,‘ = O B,'_2 B,'_[ 1 (4.2)
G 0 G-y G| |9

with the same initial conditions as the Jacobi expansion (cf. (3.2)). Schemati-
cally, we can write for this approximation of Uy:Vy: W)

P +...
p2t 3+...
ot qs
gt !
g3t - - 1
p0+ ] 1 q0+ 1
a1+ ] q+ ]
g+ g2+
q3+.. q3+..
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It is interesting to note that {g;};>o is just the ordinary continued fraction
expansion for Vo/W. Also, the B;/C; are just the ordinary convergents. Thus
the reversed expansion is not as symmetrical as the Jacobi expansion. [J

Since the 3X3-matrix in (4.1) has determinant 1, we have again that, if
U;, V;, W; are linearly independent over the rationals, then U; 11, V41, Wit
will be, and in particular ¥; ;1% 0. Thus, if Uy, Vo, W, are linearly indepen-
dent, we can define an infinite reversed expansion for them.

In matrix form we have the following identities for i =0,

-

Uo 1 Ai—y Aior| | U
Vol = |0 Bi2 B, ||V
Wo 0 G2 G| | W

\

which follow easily from (4.1) by induction as

(U] (10 p) (U
Wi 0L g||w.,

Let
e = UtV 1 = WilVi.
Then the recursion formulae become
T = Pt T/ Tier T = g Ui
where
TLivt/T i<l and U/ 1 <I.

As in the Jacobi expansion we have convergence of 4;: B;: C; to Uy: Vo: Wy,
but the proof will be postponed until the next section where a more general
theorem is proved.

5. THE MIXED EXPANSION

In the problem of finding evenly-tempered scales one is interested in scales
with small numbers of notes. In both the Jacobi and reversed expansions C;
increases too rapidly to give many interesting scales; see Tables I(a) and 1(b).
So the slow mixed expansion was devised by BARBOUR [2] to slow the growth
of C;. At each step of the slow mixed expansion, one divides by U; or V;
whichever is larger.
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TaBLE 1. Ternary continued expansions for (log,5/4, log;3/2, 1), adapted from
BARBOUR [2].

(a) Jacobi Expansion
pi ¢ A; B C; Ermor A, Error B; Total Error H;.3 K3

13 1 1 3 14 —302 316 003 —0.75
o1 1 2 3 14 98 112 0.03 0.24
17 8 15 25 —2 18 20 —0.04 0.37
01 9 16 28 —1 —16 17 —0.01 —0.38
0110 18 31 08 — 52 6.0 002 —0.13
0 228 51 87 —0.1 14 1.5 —0.008 0.1

(b) Reversed Expansion
Pi 9 A,‘ B,' C,' Error Ai Error B,' Total Error Hi+3 K'i+3

01 0 1 1 —386 498 884 —0.32 0.42
01 0 1 2 —38 —102 488 —0.64 —0.17
12 1 3 5 —146 18 164 —0.61 —0.08
22 4 7 12 14 — 2 16 0.14 —0.02
0 313 24 41 — 6 1 7 —0.20 0.02
0117 31 53 — 14 — 01 1.5 —0.06 —0.003

(c) Slow Mixed Expansion
Step p; ¢ A, B; C; Ermror A; Error B; Total Emror H;:3 K;.;3

R 01 0 1 1 —386 498 884 —0.32 041
R 01 0 1 2 -—386 —102 488 —0.64 —0.17
J 01 1 1 2 214 —102 316 036 —0.17
J o1 1 2 3 14 98 112 0.03 0.25
R 01 2 3 5 94 18 112 0.39 0.08
J 01 2 4 7 —43 —16 59 —0.25 —0.09
R 01 4 7 12 14 — 2 16 0.14 —0.02
R 01 6 11 19 — 7 — 17 14 —0.12 —0.11
R 0110 18 31 08 — 52 6.0 002 —0.13
J 0111 20 34 1.9 39 5.8 0.05 0.11
J 01 17 31 53 14 — 0.1 1.5 —0.06 —0.003

(d) Other Scales
A; B; C; Error A; Error B; Total Error

5 10 17 —33 4 37
7 13 22 —4 7 12

In a general mixed expansion, the choice of divisor at each stage can be
arbitrary. The formulae for U, ,, V;+1, W; 4, are the same as for the Jacobi
or the reversed expansion depending on whether one divides by U; or V; at
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step i. However, new formulae for 4;, B;, C; are needed.

Let J denote a Jacobi step and R a reversed step. Let kK = k(i) denote the
number of steps between the present step, i, and the last previous J step. Let
k =i if there have been no J steps. Let S; stand for either 4;, B;, or C;. Then
define S; by the following recursion formula,

S,* = PDi Si—k—3+Si 2+q,' Si—l ifStep iis R (5.1)
S," = Si—k -3+Pi S,- 2+q,' Si—l l.fStepllSJ , (5.2)

with the same initial conditions as for the Jacobi expansion. It is still clear that
C,—00 as i—oo. The following identities are useful and can be proved by
induction.

Uy Ai g3 Ai—2 Ai—(| | U
Vo| = |Bi—x-3 Bi—2 Bi| | Vi (5.3)
Wo Ci k-3 G2 G| |W

If i =0, then k =0 and the formulae follow from the initial conditions. Suppose
they hold at step i. If step i is J then from (3.3) and (5.2)

USi- k-3t ViSi2t WS =
T
U+t (01 0)[Si—x-3
= |Vier| {00 1[1Si2
Wi Lpg)|si
=UnSi—2tViaSici Wi

which is correct because at the (i + I)-th step k& becomes 0.
Similarly, if step i is R then from (4.3) and (5.1),

USi—k—3tViSi—2 t Wi,
= (Ui +piWi+)Si—k 3t Wi Si 2t (Vi Hqi Wi DS
=Us S+ tVier Sic1 tWi S
which is correct because at the (i + I)-th step k becomes k+ 1. Hence (5.3).
BARBOUR [2] does not discuss the convergence properties of the reversed and

slow mixed expansions, but the argument of theorem [ can be extended to
prove the following result.

THEOREM 2. Let Ug<V(<W, be positive numbers linearly independent over
the rationals. Given an arbitrary sequence of Jacobi and reversed steps we can
expand them in an infinite mixed expansion. Let A;, B;, C; be defined as above.
Then ].imA,-/Ci:U()/Wo and llIIIB,/C, = Vy/ Wy.

i—00 i—a0

PROOF. As in the proof for the Jacobi expansion we only need to show that
H; = A;—(Uy/Wy)C; and K; = B;—(Vy/W;)C; are bounded in absolute
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value. Letting 0y ; = V;/U;, 00; = Wi/ U, 1; = U/ V;, 72; = W;/V; then we
still know that e,;>1, 65,/0);,>1, 7,,>1, 7;/7 ;>1 since U;<W; and
V;<W; for all i=0.

There are two cases to consider.

1. Suppose step i is J. Then H;=H; , 3+pH;, ,+qH;_,, and H;=
oy [Hi—atoy HiJor Hi= —UmyqlmHi o+ H ]
depending on whether step i +1is J or R. If H; ,, H; | have opposite signs,

then

| H; | <max{ |H; 5|, |Hi-]}.

If H;_,, H_, have the same sign, then H; has the opposite sign and

| Hi | < |Hi 43|

2. Suppose step i is R. Then H;= p;H; , 1+H;, ;+qH _,, and H;=
Vg ilHi—k 3 toyimiHaJor Hi= —Umyqylr+1Hi—p -3+ H; ]

depending on whether step i+1 is J or R. If H; _, 3, H; , have opposite

signs, then

|H; | <max { | Hi 3|, |H-|}.

If H_, 3, H,_, have the same sign, then H; has the opposite sign and
| H; | < | H; -, |. Therefore, in any case

| H | <max { | H; « 5|, |H; 2|,|H ]|}

Thus the | H; | sequence is bounded. Similar reasoning shows that the | X; |
sequence is bounded and so the theorem follows. O

The proof of the above theorem does not depend on the particular sequence of
Jacobi and reversed steps used, so the convergence of the Jacobi, reversed, and
slow mixed expansions follow as special cases.

Note that we could reverse the order of Uy and V, in Section 3 without
affecting the validity of the Jacobi expansion. The effect would be the same as
using a mixed expansion with one R step followed thereafter by J steps under
the original order.

The slow mixed expansion of this section has been devised to slow the
growth of the denominator C;. Alternatively we could divide by the smaller of
U; and V, at each step in order to speed the growth of C;. We shall not
explore this possibility further here.

6. DISCUSSION OF MUSICAL SCALES

Tables 1(a), 1(b) and I(c) give the results of the Jacobi, reversed, and slow
mixed expansions applied to the numbers Uj=log,5/4 ~ 0.3219,
Vo=log,3/2 ~ 0.5850, Wy =1. Here C; represents the number of notes in an
octave, A4; the number of notes in the major third, and B; the number of notes
in the fifth. In order for 4; and B; to be the best approximations for the
denominator C; we must have

1 1
l H,‘ lz IA,_(UO/WO)C, l <7 and l Ki l= | B,_(Vo/Wo)C, | <7 .

31



For all of the interesting cases these inequalities are easily satisfied.
The errors in 4;/C; and B;/C; are measured in cents,

Error A; = 1200(4,;/C;,—Uy/Wy)
Error B; = 1200(B;/C;—Vo/ W) .

The total error is taken to be | Error 4; | + | Error B; |.

The scales from these expansions include many of the important scales pro-
posed by musical theorists and several scales in use by various non-western
cultures. The following comments are taken from BARBOUR ([2] and [3],
Chapter 6) who discusses these and other scales in more detail.

Two of the scales with fewer than 12 notes are worth mentioning. Accord-
ing to Barbour, Javanese music is based on an evenly-tempered 5-note scale,
and Siamese music, on an evenly-tempered 7-note scale.

In western 12-note music there are 5 whole steps and 2 (diatonic) half-steps
in the octave. If each whole step is split into a diatonic and a chromatic half-
step, there are 7 diatonic and 5 chromatic half-steps. In an evenly-tempered
tuning the ratio between these two kinds of half-step is taken as 1:1. If instead
one takes the ratio to be 2:1 one gets 7X2+5X1=19 notes in the octave.
Thus, one can get a non-evenly-tempered 12-note scale by taking 12 notes out
of an evenly-tempered 19 scale.

Other important scales in Table 1(c) which can be interpreted in this way
are those with 31 notes (ratio 3:2) and 53 notes (ratio 4:5).

Arabian music is based on a 17-note evenly-tempered scale. This scale has a
good fifth (within 4 cents), but the major third is very flat being about midway
between a true major third and minor third. The poorness of the third prob-
ably explains why it does not appear in the expansions.

The 22-note scale is one important scale missing from these tables though it
appears under a more general mixed expansion. It is interesting to note that
both the 19 and 22-note scales form better approximations in terms of total
error than the 25-note scale in the Jacobi expansion. Thus from this point of
view, the convergents of the Jacobi expansion are not necessarily best possible
approximations. In this respect Jacobi ternary continued fractions are weaker
than ordinary continued fractions, because in ordinary continued fractions one
gets a best possible approximation at every step.

From the musical point of view, the accuracy of the pure fifth is more
important than the accuracy of the major third. The concept of total error
does not take this feature into account. The 12-note scale has a better pure
fifth than any evenly-tempered scale with fewer than 41 notes.

The only possible systems of multiple division of the octave which could
have any practical significance are the 19 and 22-note scales. Any more notes
than that would make an instrument extremely unwieldy to play. Further, as
it does not seem likely that the 19- or 22-note scales will come into widespread
acceptance, most music seems destined to remain in the evenly-tempered 12-
note scale.
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